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The entrainment assumption, relating the inflow velocity to the local mean velocity 
of a turbulent flow, has been used successfully to describe natural phenomena over 
a wide range of scales. Its first application was to plumes rising in stably stratified 
surroundings, and it has been extended to inclined plumes (gravity currents) and 
related problems by adding the effect of buoyancy forces, which inhibit mixing across 
a density interface. More recently, the influence of viscosity differences between a 
turbulent flow and its surroundings has been studied. This paper surveys the 
background theory and the laboratory experiments that have been used to under- 
stand and quantify each of these phenomena, and discusses their applications in the 
atmosphere, the ocean and various geological contexts. 

1. Introduction 
The entrainment hypothesis was first introduced by Sir Geoffrey Taylor in a 

wartime report on the dynamics of hot gases rising in air. He spoke about it later 
at a Pacific Science Association meeting in 1949, but did not follow up that talk with 
a published paper. The idea received a wider exposure through the review lecture by 
Batchelor (1954)’ who at that time started two Cambridge students working on 
theoretical and experimental aspects of the problem, and also revived G. I.’s interest 
in the subject. This led to the joint publication (Morton, Taylor & Turner 1956, 
referred to as I in the following sections) which is the more frequently quoted starting 
point of this subject. 

The entrainment hypothesis in its original form can be stated very simply: the 
mean inflow velocity across the edge of a turbulent flow is assumed to be proportional 
to a characteristic velocity, usually the local time-averaged maximum mean velocity 
or the mean velocity over the cross-section at the level of inflow. The total inflow 
at any position will depend also on the surface area and the geometry and dynamics 
of the flow - whether it is axisymmetric or two-dimensional, a continuous jet or 
plume or a suddenly released ‘thermal ’. In  this form the assumption is deceptively 
simple, and even obvious, since for a jet in uniform surroundings it can be deduced 
from the similarity solution or justified by the most elementary dimensional 
considerations. Its power was soon demonstrated, however, by the application to the 
rise of plumes in stably stratified surroundings, a situation where similarity solutions 
of the usual kind cannot be applied. It is of course another type of similarity 
assumption, which implies the same kind of turbulent structure and balance of forces 
at each height. It can be, and has been, criticized on the grounds that it is 
demonstrably not exactly true in particular circumstances, and there have been 
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debates about possible alternative formulations, but it has in fact been enormously 
successful when applied to phenomena over a very wide range of scales. Though it 
has been adapted to take account of additional physical processes, the basic 
assumption remains an effective starting point for quantifying a wide variety of 
mixing problems. 

This paper has several related themes, all of them aimed at  demonstrating the 
power and practical success of the entrainment hypothesis, and reaching a better 
understanding of why it works so well. The basic definitions and entrainment 
equations will first be summarized and re-examined in the light of several recent 
reviews of the fundamentals. The wide range of successful applications to convective 
phenomena will then be described, with particular emphasis on geophysical examples. 
These sections on convective flows are followed by a discussion of the extension to 
mixing processes in stably stratified fluids, first with a mean flow, and then without. 
Research on the mechanism of the entrainment process, particularly work which 
sheds light on the role of the large eddies, will be discussed next. Finally, the effect 
of large viscosity differences on the entrainment mechanism itself is examined. A 
laboratory study of this aspect was motivated by a geological problem, the mixing 
of magmas of different composition and physical properties, but it has much wider 
implications for mixing processes in general. 

2. Jets and plumes in a homogeneous environment 
In summarizing the present state of the similarity theory, and the measurements 

used to test it, we will follow the excellent reviews by Fischer et al. (1979) and 
List (1982). They have treated both the axisymmetric and the two-dimensional cases, 
but only the first will be described here, with emphasis on the comparison between 
vertically directed turbulent jets (sources of momentum) and plumes (sources of 
buoyancy) in a uniform environment. Only steady flows will be treated here, not the 
stage immediately after the flow has been turned on (e.g. ‘the starting plume’, 
Turner 1962). A two-dimensional inclined starting plume will, however, be discussed 
in another context in $6. 

The three basic integral properties of these flows (integrated across the cross- 
sectional area at any level) are the fluxes of mass, momentum and buoyancy. These 
are defined by: 

pp = 2n pwrdr, (1) Jorn 
where p is the ‘specific mass flux’ or volume flux, and w is the local mean vertical 
velocity a t  radius r from the vertical line above the 

pm = 27~ pw2rdr, Sum 
where m is the specific momentum flux; and 

source ; 

where /3 is the specific buoyancy flux and 9’ = gAp/po, the effective gravitational 
acceleration, and po is the constant density of the environment. 

The symbols Q ,  M and B are used to denote the initial values of p, m and /3. These 
three are the primary variables governing the behaviour of axisymmetric turbulent 
buoyant jets provided that the Reynolds number Mi/v exceeds a few thousand, as 
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it  does in most cases of geophysical interest. When the characteristic linear dimension 
of the source is small compared with the height of rise, Q soon becomes entirely 
negligible compared with ,u and the flow can be treated as if it  arose by supplying 
M and/or B, but no volume flux, at a point (the virtual source) some distance below 
the actual source. 

The pure jet is defined by M alone, since m remains constant at all distances z .  
The mean (time-averaged) velocity is self-similar, and is described well by the 
Gaussian profiles 

W =  ~mexp[-(k>’] j  (4) 

where W ,  is the mean velocity on the centreline, and b, is a radial scale for velocity. 
The spread of a passive tracer 0 (which is assumed now to be so dilute that it has 
no dynamical effect, though its flux Y is defined by an integral like (3)) is given by 

0 = Bmexp[ -(;)‘I. 
Dimensional analysis leads immediately to the following forms for the variation 

of W,, em, b, and b, with the overall parameters M and z (the similarity solution) : 

I Wm = k,  M k l ,  

I em = k , ~ ~ k i ,  

6 ,  = 0.1072, 

b, = 0.1262, 

where the constants in the last two relations are experimentally determined values. 
Note that the spreads of both velocity and tracer are conical with distance z from 
the source with, however, a wider spread of tracer relative to velocity. (This result, 
with the same ratio of b,/b,, is also a characteristic feature of plumes, in which the 
‘tracer ’, for example temperature, is dynamically active.) The conical form follows 
from the similarity assumption, regardless of the form of the profiles, but the specific 
numerical values given in (6) do of course depend on the measured profiles (4) and 
(5). Measurements of turbulent velocities and tracer-concentration fluctuations show 
that these also have a self-similar radial distribution, and scale with M and z in a 
manner consistent with similarity. The constants k, and k, in (6) can be evaluated 
using the measured profiles (4) and (5)  and the corresponding measurements of 
turbulence quantities. The value of k,  computed ignoring the axial turbulent flux of 
momentum (i.e. assuming that all the momentum is carried entirely by the mean 
flow) is k, = 7.5, but this is reduced to k, = 6.9 (in better agreement with the values 
derived directly from (6)) if the turbulent flux is included. Similar arguments can be 
applied to the flux of a conserved tracer to give k, = 5.8;  again it has been found 
that the axial turbulent flux is not zero, and needs to be taken into account to be 
consistent with the measurements. 

It also follows from the definition (1) and the similarity solution for the jet (6) that 

,u K wb2 cc M h  (7a) 

so that 

The constant Cj for the jet has an experimental value of about 0.25 (Fischer et al. 
1979). The form (7a) implies there is a mean rate of inflow across a circular boundary 
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(radius b,, say) which is proportional to z - l ,  and therefore proportional to the vertical 
velocity scale W,  given by (6). Thus in this simple case the entrainment relation does 
not require an independent assumption, but it follows from the similarity considera- 
tions which led to (6). Moreover, once attention has been concentrated on the inflow 
velocity, the argument can be turned around: the relations (6) can be regarded as 
a consequence of the simple dimensional assumption that this ‘entrainment velocity ’ 
should be proportional to the mean (time-averaged) upward velocity W,  (which is 
the sole velocity scale needed if the flow remains similar). 

The corresponding results for pure axisymmetric plumes in homogeneous sur- 
roundings, in which B is the conserved quantity, can now be described succinctly in 
similar terms. In  all cases where B is large enough to be of geophysical interest, the 
flow will become turbulent a small distance above the source, and Q will be negligible, 
so that all plume properties will depend on B and z. Assuming similar mean profiles 
(which experimentally are again found to be closely Gaussian) leads to a linear spread 
and the following similarity solutions for the maximum vertical velocity and the 
density difference on the axis: 

where c1 and c2 are constants. The available measurements of turbulent quantities 
are far fewer for plumes than jets; in particular the magnitude of the axial turbulent 
fluxes is still uncertain, and so therefore are the precise values of c1 and c2. There is 
no doubt, however, that  the levels of turbulent intensity and of concentration 
fluctuations are much higher in plumes than in jets (Chu, Senior & List 1981). 

Related dimensional arguments can be used to write the dependence of ,u and m 

m cc B z i ,  on B and z,  

Both of these are now increasing with z, as buoyancy acts to increase the momentum 
of the flow and entrainment to increase its volume. Eliminating B gives 

p cc B%. 

p = C,mtz, ( 9 4  

where Cp is a constant with an experimentally determined value of 0.25. This is the 
same relation as obtained earlier for the jet, except that  the local momentum flux 
m replaces the constant momentum flux M for the jet. Taking into account the 
dependence of m on z ,  it follows that for the plume 

d,u - = tC, mi, 
dz 

which should be compared with (7 b) .  Thus the rates of entrainment into jets and 
plumes are both defined by the local specific momentum flux m, but (since Cp has 
the same numerical values as Cj in ( 7 b ) ) ,  the experimentally determined coefficient 
of proportionality (or ‘entrainment rate’) is higher for plumes. As first pointed out 
by Batchelor (1954), it  follows from the above that for plumes as well as for jets 
the entrainment relation is a fundamental consequence of the similarity arguments 
which predict the linear spread of radius with height, and is not an independent 
assump tion. 

In the transition regime between jets and plumes, there will therefore be some 
uncertainty about the entrainment and dilution rate, though the form of dependence 
on the integral flow quantities is the same in the two limiting cases. In  pratical 
situations, however, the jet-like region is often small. The initial specific momentum 
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flux M is continuously being increased by buoyancy, and the buoyancy-generated 
momentum dominates above a height of order 1 ,  = A&B-a (Morton 1959). Fischer 
et al. (1979, Chap. 9) have contrasted the behaviour of three flows: a pure jet, a pure 
plume, and a buoyant jet having the same M = 3 m4 sP2 and B = 0.26 m4 sP3 as the 
first two. They demonstrated that the ‘mixed’ case rapidly becomes plume like, with 
1, = 4.5 m, and that the mean dilution 60 m above the source is p/Q = 68, which 
is essentially that for a pure plume (and nearly three times that predicted for the 
jet). 

3. The entrainment equations 
The entrainment assumption will now be taken as the explicit starting point, i.e. 

it will be assumed that the inflow velocity a t  the ‘edge ’ of the flow is some fraction 
a of the maximum mean upward velocity. Using the previous notation, this implies 
that 

!!! = 2xbw a W,, 
dz 

where W ,  and b,  for Gaussian profiles are defined by (4). The ‘entrainment constant ’ 
a clearly depends on the profile chosen, and it will be numerically different if 
equivalent ‘ top-hat ’ profiles are used. Its relation to the constants already given 
for jets and plumes will be discussed below. The larger spread of the time-averaged 
mass concentration given in ( 5 )  and (6 )  will also be taken explicitly into account. For 
both jets and plumes be/bw has nearly the same constant value, and we write 

The equations of conservation of mass, momentum and buoyancy can be written, 
using Gaussian profiles and the Boussinesq approximation, in the following form (see 
Turner 1973 and Fischer et al. 1979 for a more detailed discussion of the derivation 
and underlying assumptions) : 

belb, = A = 1.2. 

1 
d 
- (b& W,) = 2ab,W,, 
dz 

d 
( 3 L W h )  = A2b&gB,, 

With the more general application to stratified surroundings in mind, the third 
(buoyancy) equation includes, on the right, N2 = ( -g/pl)(dpo/dz) the square of the 
local buoyancy frequency. The value of g’ = gB = g(po -p) /pl  is calculated using the 
local density difference between the plume p and its environment po at height z, and 
p1 is some standard density in the environment. Note again that the numerical 
coefficients in (1 1)  depend on the form of the profiles, and the velocity and length 
scales used ; they are different for ‘ top-hat ’ profiles. The equations can be solved once 
initial values of b,, W ,  and 8, are specified, as they can be if Q, M and B are 
known. 

For homogeneous surroundings ( N 2  = 0 ) ,  the similarity solutions are entirely 
equivalent to ( l l ) ,  and will in fact be particular solutions of these equations. For the 
limiting cases of jets and plumes Fischer et al. (1979) have used the experimentally 
determined parameters to show that (for Gaussian profiles) 

ajets = 0.054, aplumes = 0.083. (12) 
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This difference in entrainment rates for jets and plumes is consistent with the 
deductions made from (9 b) ,  which indicated that the dilution rate of a plume is higher 
than for a jet for the same local momentum flux. Turner (1973, p. 173) presented 
earlier evidence for different U-values (obtained by Ricou & Spalding 1961), but 
suggested using caution until further evidence became available. This has now been 
obtained and assessed, and use of (12) does seem justified. 

Another point worth repeating is that the values of a given by ( 1 2 )  are only 
indirectly related to the angle of spread of the velocity profile in jets and plumes. 
For jets, (10) gives db,/dz = 2a = 0.107, as already set out in (6). For plumes, the 
corresponding relation is db,/dz = !a = 0.100, although this value is based on much 
less precise data. Thus the angles of spread are very little different for jets and 
plumes, in spite of the fact that the ‘entrainment rates’ as defined above are 
substantially different. A constant angle of spread was suggested as a reasonable fit 
to all the experimental results on buoyant jets over the whole length of the flow, 
including the transition (List & Imberger 1973), though Chu et al. (1981) have 
reported anomalously small angles of spread in the transition region. 

Note again that a does not enter very sensitively into many calculations, so that 
using a fixed value (that for the plume seems most appropriate, though even an 
arbitrary compromise between the values given in (12) is a possible choice) will not 
make a large practical difference to the final answer. Relating entrainment to W ,  
and therefore to the largest scales of motion in a jet or plume seems to be the 
physically most significant step. This assumption works so well because in fact 
the initial mechanism of entrainment, which will be discussed in more detail in $8, 
is the engulfing of external fluid by the large eddies at the edge of a jet or plume. 
The assumption of similarity means that these large eddies retain the same relation 
to the mean flow whatever the scale of motion, and the level of turbulent energy at 
smaller scales is less important. The external parameters (like B )  defining the flow 
vary over such a wide range that provided the mean flow scales with these in the 
manner predicted by similarity, the smaller variations of a will be relatively 
insignificant. 

Hunt, Rottman & Britter (1983) have pointed out that several different usages of 
the term ‘entrainment velocity ’ have grown up over the past thirty years. Though 
they are conceptually and sometimes quantitatively different, they are sometimes 
confused, and before moving on to more complicated topics it is worth discussing and 
comparing them carefully, using the simple jet as an example. The first use is the 
definition that we have set out in (10) ; the entrainment velocity E is the rate E = a W 
at which external fluid flows into the turbulent flow across its boundary. 

A second definition is related to the rate E,  at which the edge of a turbulent flow 
is spreading out and engulfing the surrounding fluid at rest. For a planar interface 
(such as those discussed in $ 7 )  E and E, are just equal and opposite, but this is not 
true in other geometries. For a jet, Mcc b2w2 is constant, so (10) implies that 
db/dz = 2a. Conceptually it is easier to think in terms of ‘top-hat’ profiles, or 
velocities averaged across the section, and in this context Wand b are used to denote 
the velocity and radius defined in this way. The outward velocity at the ‘edge’ of 
the jet, measured in a fixed coordinate system, is 

db 
dz 

Eb = --W 

= -2aW 

= -2E. 
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A third entrainment velocity EC can be defined if the outward velocity is measured 
relative to the local mean flow, leading to 

EC = Eb-E = -3E.  (13b)  

Entrainment can also be defined in terms of the rate of transfer of a contaminant 
across a fixed surface (for example in a two-layer stratified system, with turbulence 
on both sides of an interface). The flux entrainment velocity E ,  = Fc/AC, where F, is 
the flux of concentration (or density) and AC is the concentration difference, is 
independent of AC. Note that EF may be in the opposite direction to  Eb, and that 
E ,  can be non-zero while E and E,  are both zero. 

4. Plumes in stable surroundings, and further extensions 

We now turn to  the problem that first demonstrated the more general applicability 
of the entrainment assumption and the use of the entrainment equations ( 1  1 ) .  When 
the environment is stably stratified, the ordinary similarity solutions in powers of 
the height are not appropriate, because in these circumstances plumes must come to 
rest a t  a finite height. They entrain denser fluid during the early part of their rise 
and reach a terminal height where their density equals that  of their surroundings and 
they spread out horizontally. There is no comparable limitation on the entrainment 
equations (1  l ) ,  which can be integrated from z = 0 for any initial values of b,, W ,  
and 8,, corresponding to arbitrary Q, M and B. The practically most useful 
asymptotic case is still that  for a virtual point source of buoyancy alone in an 
environment with constant N .  The entrainment equations can then be put in a 
non-dimensional form using B and N as the two governing parameters that  
determine the scale of the motion. The transformations relating the dimensional and 
dimensionless variables (the latter denoted by a subscript 1 )  were first given in I ; with 
the simplifying assumption h = 1 ,  they are 

I z = 0.410a-t&N-fz1, 

b, = 0.819a~%N2b1,  

W ,  = 1.l58a-?&Nhul, 

6, = 0.819a-~&iV&9,. 

The corresponding dimensionless equations will not be repeated here, but the 
solutions of them set out in I, for b,, w1 and 13, as functions of z,, are shown in figure 1 .  
Up to z1 = 2.0 the plume spreads nearly linearly, and the solutions are close to  those 
in a uniform environment. Above this height, i t  spreads more rapidly sideways; a t  
z1 = 2.13 the density difference first vanishes, and at z1 = 2.80 the vertical velocity 
vanishes. These two dimensionless heights give plausible estimates of the bottom and 
top of the horizontally spreading region of flow, though in this region of rapid 
spreading the entrainment formulation based on similarity of the profiles becomes 
more questionable, and the overshoot that  is observed is not properly represented. 
When the maximum value of z1 and the value of a previously determined for a 
uniform environment (a = 0.083) are substituted into the first of equations ( 1 4 ) ,  one 
obtains a numerical estimate for zmax in terms of B and N .  

Of course, the form of the relation for z,,, in powers of these two parameters can 
be written immediately using a dimensional argument, without any explicit reference 
to ( 1 1 )  or to (14 ) .  Once this relation is accepted, the multiplying constant can be 
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FIQURE 1. The dimensionless solutions for the radius b,, velocity w1 and buoyancy 8, of a 
plume in stratified surroundings, defined by (14), plotted as a function of height zl. 

evaluated by direct experiment, as was done in I using small-scale experiments in 
stratified salt solution such as that shown in figure 2 to give 

z,,, = 5.OflG-g 

= 3 . 8 a N - f ,  (15) 

where (following Briggs 1969) we have used the notation P = B/n and G = P. There 
is a great deal of physics hidden in this formula, however, and the underlying 
requirements for it to be valid (flow similarity a t  each cross-section, and the 
dependence of entrainment on the largest scales of motion), are not apparent from 
(15) alone. Nevertheless, the numerical constant in (15) is a measure of the average 
rate of entrainment over the whole height of rise, and the direct laboratory 
evaluation using as wide a range of N and B as possible is probably the most 
satisfactory method of determining this constant. 

This method has certainly been amply justified by subsequent results obtained in 
many different contexts. Briggs (1969) compiled the data shown in figure 3 (a) (and 
quoted by Turner 1973) which shows that the same formula (15), with the Same 
numerical constant, can be applied to plumes extending up to 10000 ft (3 km) above 
an oil fire. (For the atmosphere, potential temperature gradients must of course be 
used in determining N . )  Since then, the height range has been extended by another 
order of magnitude; Wilson et al. (1978) have successfully applied (15) to describe 
the heights of rise of the plumes of hot gas and ash emitted from erupting volcanoes, 
and the model has been further developed by Sparks (1986). They assumed a 
standard atmospheric lapse rate, and related the heat output to the equivalent 
volume eruption rate of lava (with allowance for a reduced efficiency of transfer of 
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FIGURE 2. Shadowgraph picture of a dyed, turbulent plume of salt solution spreading out in 
stratified surroundings at the level where its density equals that of the environment (about 10 cm 
in this laboratory experiment). Note the overshoot to the level where the velocity vanishes. 
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FIGURE 3. The extrapolation to large scales of laboratory results on the rise of plumes in stratified 
surroundings. (a )  The data compiled by Briggs (1969), compared with (15). ( b )  Heights of volcanic 
clouds plotted against volume eruption rates (Wilson et al. 1978). Three theoretical curves are 
shown for different ‘efficiencies’ (the fraction of the heat associated with the hot rock which is 
transferred to the air to drive convection). Again (15) has been used, with a standard atmospheric 
lapse rate. 

heat to the plume due to the falling out of the larger hot rock particles near the vent). 
Their plot of observed cloud heights as a function of eruption rate for eight large 
eruptions is shown in figure 3 ( b ) ,  where the observations are compared with (15) 
(using three different ‘efficiency factors’). Figure 4 is a photograph of the rising and 
spreading plume for the 1956 Bezymianny eruption, which is probably the largest 
natural event to which this theory has been applied. 

Before giving other recent engineering and geophysical examples, i t  is worth 
pausing again to consider why (15) works as well as it does, given the many 
simplifying assumptions that it implies, and the factors that have been neglected. 
The volcanic source has a finite area, and the flow is undoubtedly jetlike at  the exit: 

15 F L M  173 
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FIGURE 4. The rising and spreading plume above the Bezymianny eruption of 1956 (from Gorshkov 
1959). This is the largest natural event to which the plume theory, and the extrapolation of the 
laboratory data, has been applied. 

but our discussion of buoyant jets in homogeneous surroundings has shown that both 
these starting conditions are ‘forgotten ’ within say ten diameters above the source. 
The density gradient or N2 is not strictly constant, with height or in different 
geographical regions, but the total variation is small, and i t  enters weakly into (15). 
As discussed previously, 01 too has such a small variation between various types of 
turbulent flows that is it  plausible to use a constant value (and furthermore the 
square root enters into (14)). In  fact the only parameter that varies substantially is 
B and this does so by an enormous factor of lozo between the laboratory and the 
largest-scale natural flow. What all the observations have shown convincingly is that 
the height of rise of plumes in a stable atmosphere is predicted to acceptable accuracy 
by z m r t , a ~ ,  which follows from the entraining plume dynamics, with the near 
constancy of the numerical factor being an indication of the insensitivity to all the 
other parameters. 

When the conditions a t  the source are well enough known, and significantly 
different from the relations appropriate for pure plumes from point sources, or the 
environmental density gradient varies greatly over the height of interest, it is 
possible to integrate the set of equations (1 1) directly including the initial momentum 
and the detailed form of Nz(z) .  This is sometimes justified in engineering contexts, 
for example to predict the height of rise sewage effluent above outfalls on the sea 
floor. 

Another application, in which the finite area of the source certainly needs to be 
taken into account, is the rise and growth of large convective clouds. The use of the 
entrainment equations in this context was initiated by Morton (1957) and followed 
up by Squires & Turner (1962). By adding a moisture-conservation equation to the 
other three and allowing for the generation of extra buoyancy by the release of latent 
heat, they produced results with some features in good agreement with observation, 
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especially their prediction of cloud shapes as the upflow first accelerates and narrows 
just above cloudbase and then spreads out in stable surroundings. However, i t  was 
not possible to predict both realistic liquid-water concentrations and heights of 
penetration for the same cloud, and i t  seems that clouds, which are often nearly as 
broad as they are tall, cannot properly be described by similarity theories which 
imply lateral entrainment and a fully developed state a t  each cross-section. 

Other problems of engineering importance involve jets and plumes discharged a t  
an angle to the vertical, or into a cross-flow with or without stratification. These have 
also been solved using extensions of the dimensional arguments or similarity 
solutions developed from the equations of motion to  describe sections of the flow 
where particular processes dominate. (Refer again to Fischer et al. 1979 and List 
1982). 

There have also been several recent geological applications of plume theory. The 
maximum height of rise of the hot-water plumes above individual ‘ black-smoker ’ 
vents a t  spreading centres has been calculated by Campbell, McDougall & Turner 
(1984) (using (15) with estimates of the flow rate and the density gradient) to be 
about 300 m, in satisfactory agreement with the observed height to  which tracer 3He 
from the vents rises above the East Pacific Rise. The corresponding flow velocities 
are so much greater than the fall velocities of the small sulphide particles (the ‘black 
smoke ’) that this cannot be deposited locally from the plume, and other mechanisms 
need to be considered to  explain the build-up of massive sulphide deposits. More 
accurate estimates of the dispersion will, of course, need to take account of the effect 
of currents in bending the plumes over and the interaction of many small plumes to 
form a larger distributed source. 

Campbell, Naldrett & Barnes (1983) have applied plume theory to describe the 
behaviour of new inputs of less dense magma injected into a stratified magma 
chamber - a very different fluid system from air or aqueous solutions ! They set out 
to explain the origin of platinum-rich sulphide horizons in large igneous intrusions, 
starting with the principle (derived from geochemical considerations) that a large 
amount of mixing between an incoming pulse of sulphide melt and the Pt dispersed 
through the original magma is essential if Pt is to be concentrated into sulphide 
ore. The most favourable conditions for producing such mixing, they have argued, 
occur when two conditions are met. First, the new hot magma rises as a plume, mixes 
with the host magma and spreads laterally to  form a layer a t  its own density level. 
(For this stage, they have calculated the entrainment into line plumes of various 
strengths, and the dilutions a t  different heights.) Secondly, the intruded layer can 
lose heat rapidly to the cooler overlying host magma. If the density difference (due 
to the combined effect of temperature and composition) between the original magmas 
is small, and so is the density gradient, then the lower part of the magma chamber 
will destabilize and convect as i t  cools, allowing any immiscible sulphides that form 
to equilibrate with a large volume of silicate melt. 

5. Turbulent thermals and buoyant vortex rings 
Suddenly released buoyant clouds or thermals have also been studied using an 

entrainment hypothesis and set of entrainment equations, following the formulation 
of this idea in I. There is, however, a significant difference between the thermal and 
the plume cases which was discussed by Turner (1973), and this is worth summarizing 
again in the present context. 

15.2 
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The equations of conservation of mass, momentum and buoyancy analogous to  
(1 1 )  are for a spherical thermal 

I db3 
dt 
- = 3ab2Wo, 

In  writing these equations, with the specific numerical constants given, it has been 
assumed that the inflow velocity into a thermal is proportional to the mean upward 
velocity wo and to the surface area, and that the virtual-mass coefficient, describing 
the momentum of surrounding fluid, is that appropriate to a sphere. The Boussinesq 
assumption is also implied ; the modifications introduced by including large density 
differences in the inertia terms were added by Escudier & Maxworthy (1973), and 
these will be discussed further in $8. 

The first of these equations shows immediately that b = az, so that the entrainment 
assumption, used with mass continuity alone, implies that the spread is linear with 
height regardless of the properties of the environment. This is very different from 
the result for plumes. The first two equations in ( 1  1 )  are needed to derive an expres- 
sion for db,/dz, which depends not only on 01 but also on the local values of b,, W ,  
and 8,. The examples given in 54 have indicated that the shape of a plume which 
first accelerates and then decelerates in stably stratified surroundings can be very far 
from linear. 

Similarity solutions equivalent to (8) and (15) can be written to describe respectively 
the motion and dilution in homogeneous surroundings, and the final height attained 
in a linearly stratified environment. The latter, for example, may be expressed as 

z,,, cc a-ffi*N-: = 2.66fi*G-a, (17) 

where F ,  is the total buoyancy released a t  the source (F, = g(p,-p)V,/p, where p 
and Vo are the initial density and volume of source fluid), and the constant is taken 
from the laboratory experiments reported in I. Thermals released from rest are 
observed to spread a t  a much wider angle than plumes, and thus they dilute more 
rapidly with height. The angle of spread is also more variable than i t  is for plumes 
and is sensitive to the initial conditions. This behaviour, and other important 
properties of thermals, can be understood better if they are regarded as a special case 
of a buoyant vortex ring, following Turner (1957, 1960). 

For a thermal, the circulation is generated by buoyancy, whereas in a vortex ring 
the buoyancy F, and circulation KO cc W, R, where R is the radial distance from the 
axis to the centre of the core, can be specified independently a t  the source. For rings 
with sharp cores containing all the buoyancy and vorticity, both of these quantities 
remain constant in time in a uniform environment, since a circuit can be taken round 
the core entirely in fluid of constant density. Buoyancy acts, however, to increase 
the momentum of the vortex ring and the surrounding fluid which is set into motion 
by its passage. This momentum, or total impulse P, is defined by P = npKo R2, and 
the momentum equation becomes 

d P  dR2 _ -  dt - npK0 - dt = pF,.  
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Integrating gives R2-Rt = &t/nK0, and adding the assumption that the velocity 
distribution remains similar a t  all heights, so that wo = CKo/R,  leads to 

Thus the angle of spread of a buoyant vortex ring is constant and proportional to 
F,/Kt.  Generation of circulation in a buoyant thermal following the release of fluid 
having a small density difference from its surroundings produces a relatively small 
value of KO and large aR. K can remain constant in this case too if the generation 
of circulation by buoyant fluid up the centre is balanced by its destruction due to the 
mixing across the centreline of vorticity of opposite signs. Increasing KO for a given 
F* (by injecting fluid with extra momentum a t  the source), leads to a smaller angle of 
spread. This can also be achieved by the action of buoyancy in the early stages of rise 
when the density differences are large; this process can also lead to the formation of a 
distinct, persistent hot core (see figure 5) .  Once a stable? similarity state is attained 
FJK; stays constant, and defines the rate of mixing with the environment. 

Thus the total rate of addition of external fluid is determined by the overall 
dynamics, through the momentum equation (18) and the initial conditions, and 
without considering turbulence or indeed any detailed mixing mechanism. It is 
questionable, therefore, whether it is really appropriate to regard this as an 
‘entrainment ’ process a t  all, in the sense that this concept has been used for jets and 
plumes. Nevertheless, (16) and (is), and the generalized version of these (Turner 
1960) which allows for the variation of K with height and of a (or aR) with KO,  are 
useful in describing the rise of buoyant thermals or vortex rings in different 
circumstances, particularly in stable surroundings. An indication of the overall effect 
on the height of rise may be obtained by substituting the form a cc F , / q  from (19) 

(20) 
into (1 7 )  which gives 

z,,, cc F;~$G+.  

Note the very strong dependence of height on KO,  which implies that relatively modest 
changes in the initial circulation can lead to a large increase in the final height to 
which buoyant material will rise in stable surroundings; this effect was certainly 
observed for the large explosion clouds pictured in figure 5 .  The surprising prediction 
that z,,, decreases with increasing F ,  for fixed KO has been confirmed by laboratory 
experiments; this behaviour is a consequence of the larger angle of spread, and 
increased rate of entrainment of the denser environment, corresponding to a larger 
F 1 / P o .  Near the final height in stable surroundings, the similarity assumption with 
constant u and rate of spreading is not a good representation of the behaviour. Only 
in special circumstances can the radius continue to increase linearly, as implied by 
(16). For a buoyant vortex ring in which the circulation remains non-zero when the 
momentum vanishes, the radius begins to decrease soon after the buoyancy becomes 
zero, and the vortex ring will therefore tend to collapse suddenly and mix into its 
surroundings. 

It is also interesting to consider thermals in unstable surroundings or (equivalently) 
those in which buoyancy is generated internally, so that the density difference is 
changing in a prescribed way. Using chemically generated gas bubbles in a liquid to 
simulate the release of latent heat in atmospheric clouds, Turner (1963) produced 
laboratory thermals which either accelerated uniformly, or rose with constant 

t If the core becomes unstable, however, there could be a rapid breakdown to a turbulent state, 
and degeneration into a thermal with a much smaller value of K .  
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FIGURE 5. The buoyant vortex ring formed by a large explosion, showing the hot core and the 
surrounding fluid, marked by dust, which is moving with the ring. 

velocity. In  all cases the radius increased linearly with distance, as predicted by 
similarity theory. There was a small change in the mean half-angle of spread which 
ranged from a = 0.20 for accelerating thermals, through a = 0.23 for elements with 
constant velocity to 0.25 (or slightly more) for ordinary thermals with constant total 
buoyancy. 

A. D. McEwan (personal communication) has also produced experimental thermals 
and plumes in which the buoyancy is increasing because of the release of gas bubbles. 
His technique uses the pressure change with decreasing depth to produce bubbles 
from a saturated liquid, and is therefore a better model of the release of latent heat 
by condensation. (It also allows the process to be reversible and simulate evaporation.) 
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FIQURE 6. Sketch of a gravity current on a slope, with an initial head followed by a steady layer 
flow. Entrainment into this inclined two-dimensional plume is inhibited by the component of 
gravity acting normal to the edge. 

He has observed that plumes with internally generated buoyancy do not entrain as 
rapidly as normal plumes, and has attributed this to the fact that this process reduces 
the toroidal circulation and hence the strength of the entraining eddies. 

6. Turbulent gravity currents 
There have been two recent reviews of gravity currents, covering both the 

fundamentals and the increasingly diverse range of applications, which should be 
mentioned here, and consulted for further details of these flows. That by Simpson 
(1982) concentrates on horizontal currents, occurring either a t  the top or bottom 
boundary of a fluid or as intrusions a t  some intermediate level in a stratified 
environment. In  these cases mixing a t  the front is generally more important than 
the direct mixing into the steady flow behind, and the front is a controlling feature 
of the flow. Hopfinger’s (1983) review, on the other hand, addresses the problem of 
avalanches, and therefore deals with inclined gravity currents in more detail. It is 
the latter problem to which the extension of the entrainment ideas has been explicitly 
and successfully applied, and which will be discussed in this section before outlining 
the wide-ranging applications to natural phenomena. 

A turbulent gravity current on a sloping floor or roof can be regarded as a special 
case of a two-dimensional plume (figure 6). Again the mean flow is driven by gravity, 
or more precisely the component of gravity acting down the slope. There will also 
be a component of gravity acting normal to the entraining edge of the plume, so that 
buoyancy forces have the extra effect of inhibiting mixing into the plume. For a 
strictly two-dimensional flow over a plane boundary, with a homogeneous environ- 
ment a t  rest, the equations of conservation of mass and momentum (corresponding 
to the first two of the entrainment equations (11)) are 

Here U is the mean velocity in the direction x along the slope, and h is the depth 
defined by integrals across the flow in the direction of the normal z :  

Uh = jam dz, U2h = u2 dz, 
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g' = gAp/p, 0 is the slope, and E is an entrainment parameter which will be discussed 
below. In writing the second equation, the boundary friction has been neglected 
compared with the drag due to mixing, an assumption which can readily be justified 
for steep slopes. It should be noted, however, that  the case where 0 is small, and 
bottom friction is significant, is the important one for lakes and for bottom currents 
in the ocean. (Refer again to Fischer et al. 1979). 

According to (21) the inflow or entrainment velocity is still assumed to be 
proportional to the local mean velocity of the flow, so that the basic entrainment 
hypothesis remains unchanged. What has been added is the assumption, following 
Ellison & Turner (1959), that  E is no longer a constant, but that  it should be taken 
to be a function E(Ri,) of an overall Richardson number defined by 

where A = g'hU is the (constant) buoyancy flux per unit width. Thus a new physical 
parameter has been introduced, representing the stabilizing effect of the density 
difference and the relative importance of buoyancy and inertial forces, but the 
dominance of entrainment by the large-eddy structure is still implied by this 
formulation. 

The solution of (21) is equivalent to the similarity solution for a two-dimensional 
plume with source strength A per unit width. On a given slope, the mean velocity 
is constant with distance x and proportional to A:, and for slopes 2 5' the speed is 
very insensitive to slope. When the unsteady 'starting-plume' phase of the motion 
is considered (figure 6), as it must be in the application to avalanches, for example, 
the front velocity U, has the same form U,cccAj (Britter & Linden 1980). The 
multiplying constant c is 1.5kO.2 for 5' d 8 d go", and this front velocity is about 
60 yo of the mean velocity of the steady flow behind (when the density differences are 
small). The angle of spread of the steady current is constant along the slope, and 
dh/dx = E(Ri,), a result that  continues to be valid when bottom friction is taken into 
account. Thus Ri, and E have particular values corresponding to a given slope; the 
flow adjusts to the equilibrium value quite rapidly. E is a strong function of Ri,, 
which was measured by Ellison & Turner (1959) and can be represented to good 
accuracy by 

0.08 - 0.1 Ri, 
E =  

1 + 5Ri, ' 

The same set of experiments showed that E z 10-3(8+5), where is in degrees, 
whereas the head grows a t  the much faster rate dH/dx x 4 x 8. For a vertical 
two-dimensional starting plume the spread of the head is still very much larger than 
that of the plume behind, whereas for an axisymmetric starting plume the two 
remain more nearly equal. The two-dimensional-plume theory can be extended to 
flows down a slope in a stratified environment. The expression corresponding to (15), 
for the depth z,,, a t  which a two-dimensional current will reach the density of its 
surroundings and spread out away from the slope into the interior, is 

z,,, oc ~ - 4 ~ : i t - l .  (24) 

Hopfinger (1983) has also reviewed the related work on two-dimensional thermals 
or buoyant cloud moving along a slope. These have features in common with the head 
of a gravity current, except that they are not supplied with buoyant fluid from 
behind. The shape can be approximated by a half-ellipse; clouds released from rest 
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first accelerate and then decelerate, and in the decelerating phase their velocity as 
a function of position xf down the slope is described by the result obtained from 
a dimensional argument. This is U, - (giV,/x,):, where V, is the initial volume per 
unit width and gi the initial buoyancy. The multiplying constant is now much 
more sensitive to slope angle, and it decreases as the slope tends to 90°, reflecting 
a large increase in the mixing rate in that limit. Over the range 5' < 8 < 50°, 
which is most important for avalances, however, the front velocity is given by 
Uf = (2.6k0.2) (gLVo/xf)i. 

One of the early applications of this entrainment theory of gravity currents was 
to methane roof layers in coal mines (this provided the motivation for the experiments 
of Ellison & Turner 1959). The above results for an environment at rest can also be 
extended to calculate the opposing (non-turbulent) flow that would be needed to 
prevent a dangerous layer of methane flowing uphill along the roof of a sloping mine 
roadway. The entrainment rate is now assumed to be proportional to the diflerence 
in velocity across the edge of the roof layer, and Ri, is defined using this velocity 
difference. When the opposing (downslope) ambient flow reaches a certain critical 
speed, there can be a sudden decrease in Ri,, leading to a reversal of the layer flow 
associated with a greatly increased rate of mixing and hence dilution of the methane 
layer. 

Longuet-Higgins & Turner (1974) have shown that several features of a spilling 
breaker on the surface of shoaling water can be described using a similar model which 
regards the whitecap as a turbulent plume, running down the forward slope of the 
wave and entraining laminar, upward-moving fluid below it. In particular they 
predicted the conditions under which the whitecap can form and survive (which 
depends sensitively on the slope) and the magnitude of the downslope velocity, in 
good agreement with laboratory observations. 

Another straightforward application is to katabatic winds formed by cooling at a 
slope (on the Antarctic continent, for example). In  this case the strength of the 
onshore wind needed to bring the air to rest near the ground can be calculated. A 
more recent spectacular large-scale application of these ideas has already been 
referred to several times : the prediction of flow velocities in powder-snow avalanches 
on steep slopes. Though the density differences in that case are due to suspensions 
of snow crystals in air, and can be quite large, the measured front velocities are in 
good agreement with the values obtained in laboratory-model experiments using salt 
and fresh water, as well as suspensions of solid particles in water. (Hopfinger & 
Beghin 1980 and Baines & Hopfinger 1984 have generalized the theory to include 
very large density differences. A discussion of this aspect is deferred to $8.) Turbidity 
currents produced by slumps of mud on the ocean floor have been successfully 
described in the same terms. The resulting deposits, and the channels cut by the 
currents, can be followed for great distances from shallow to deep water. Related 
phenomena on the surface of Mars have also been reviewed by Simpson (1982); it  
has been suggested that channels in the Martian surface could have been formed by 
gravity currents driven by dust particles suspended in the atmosphere. 

Another type of downslope flow, which derives its energy from the density 
difference due to suspended particles of hot ash, is the nu6e ardente, or pyroclastic 
flow, originating from an erupting volcano. Such flows can achieve speeds of up to 
50 m s-l over distances of several km. Because air is entrained into the top of the 
flow and heated, there is also upward convection associated with this downslope flow, 
which has recently been simulated in the laboratory by Huppert et al. (1986), using 
a mixture of methanol and ethylene glycol (MEG) flowing up under a sloping roof 
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FIGURE 7 .  A nuke ardente, a downslope flow of hot ash, with a convecting cloud of  heated air above 
it, formed during the 1975 eruption of Ngauruhoe in New Zealand. (See Nairn & Self 1978; photo 
by R. Foley.) 

FIGURE 8. A laboratory model of a nuke ardente. The nonlinear density changes accompanying the 
mixing of a methyl alcohol/ethylene glycol mixture with water have been used to  simulate the 
reversal of buoyancy due to entrainment and heating of  the air above a downslope flow of hot ash. 
This photograph has been inverted to facilitate comparison with the natural phenomenon shown 
in figure 7 .  (After Huppert et aZ. 1986). 
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in water. The mixing behaviour of MEG and water is very nonlinear, so that 
intermediate mixtures can be denser than either original component. Thus as the 
light MEG flows along the slope and entrains water, a relatively dense intermediate 
mixture forms and convects away from the slope, so providing an inverted model of 
the natural phenomenon. The two are compared in figures 7 and 8. The results 
obtained so far for this laboratory analogue are mainly qualitative, but there is some 
indication that the downslope velocity of the front of model nuke ardentes is less than 
that of an ordinary gravity current. This is probably due to a combination of two 
effects: the extra drag caused by the upflow a t  the edge, and the decreasing 
downslope buoyancy flux associated with the density reversal. 

7. Mixing across density interfaces 
In this section it seems appropriate first to survey briefly the geophysical processes 

and applications before going on to describe the theories and laboratory experiments 
that have been developed in order to understand them. Well-mixed layers of nearly 
constant density often occur near boundaries in stratified fluids. The overall effect 
of the energy inputs near the ground or the sea surface, for example, is to produce 
a more homogeneous, turbulent surface layer, bounded by a region of increased 
density gradient - the inversion layer in the atmosphere, and the diurnal or seasonal 
thermocline in the ocean. This layer of high stability is only intermittently turbulent, 
and it acts as a barrier to the transport of mass and heat (and other properties such 
as moisture or salinity) out of the surface layer. The depth and composition of the 
well-mixed layer can, however, change because of entrainment into it through the 
interface, and a variety of processes which affect the entrainment must be understood 
before one can predict, for example, the depth of the oceanic mixed layer and the 
sea-surface temperature. Among the effects which need to be considered in turn are 
the nature of the surface energy sources (whether the mixing is due to the mechanical 
effects of the wind stress, or to convection), the influence these have, individually or 
in combination, on the motion in the surface layer, and finally the mechanism of 
entrainment at the interface itself. 

The theoretical and laboratory studies described below are integral models, which 
treat the mixed layer as a single entity and are one-dimensional in depth. That is, 
the mixing is supposed to be uniform in the horizontal, though horizontal currents 
driven by a wind stress and variations in time of the input processes can be included, 
and some individual localized mixing processes will be discussed. There have been 
several fairly recent reviews of the development of these one-dimensional models and 
especially of their relevance to the ocean (Niiler & Kraus 1977; Sherman, Imberger 
& Corcos 1978; Turner 1981), which can be referred to for more details. Here, as in 
earlier sections, we use selected laboratory experiments to illustrate the principles 
involved, which again rely heavily on modifications of the entrainment assumption. 
The overall results will be described first, and then (in the following section) some 
more detailed experiments and theories which probe further into the fundamental 
mechanisms of turbulent entrainment in homogeneous and stratified fluids. 

We consider now mechanical mixing processes, starting with the case where a 
constant stress r,, is applied a t  the surface (for example by the wind) but without 
any heat (i.e. buoyancy) flux. The associated velocity scale is the friction velocity 
v*, defined by ro = pw v$. Suppose that a t  time t the  well-mixed layer has depth h and 
a density step Ap below it. A dimensional argument related to that used in (21) 
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FIGURE 9. Sketch of the starting conditions for the two types of laboratory experiments used to 
model mixing due to surface energy inputs. (a)  A linear density gradient: a step forms as the surface 
layer becomes well mixed. ( b )  Two homogeneous layers. 

suggests that the entrainment velocity U,  = dh/dt (which is equivalent to Eb, defined 
just before equation (13)) can be expressed in the form 

- '' = E*(Ri*), 
v* 

where Ri, is an overall Richardson number based on the friction velocity, 
Ri, = ghAp/p,v2, = C 2 / v i ,  say. Note that there has been a subtle change in the 
entrainment assumption in this formulation, with the friction velocity replacing the 
mean velocity. 

Two related laboratory experiments, by Kato & Phillips (1969) and Kantha, 
Phillips & Azad (1977), have modelled this process and tested (25) ,  using respectively 
the starting conditions shown in figure 9(a,b). They both used an annular tank to 
eliminate end effects, and the stress r0 was applied through a rotating grid at  the 
surface. (We note in passing a series of related experiments recently reported by 
Narimousa, Long & Kitaigorodskii (1986) from the same laboratory, which used a 
disk pump to drive the shear flow.) The first experiment started with a linear salinity 
gradient (buoyancy frequency N ) ,  and in that case the depth h is related to Ap and 

In the second set of experiments the gradient was replaced by two layers of different 
density, and conservation of buoyancy in that case gives 

~2 = @.LY = const. (26 b )  
P w  

The difference is that C2 and Ri, are definitely increasing as the layer deepens in case 
(a ) ,  whereas they are constant in case ( b ) .  

It is significant that (25) does not collapse the data of these two sets of experiments 
on to a single curve : at a given Ri, and h, E ,  is a factor of two larger in the two-layer 
experiments than with a linear gradient. Price (1979) proposed that the rate of 
entrainment should be scaled instead with the mean velocity V of the layer (or more 
generally, the velocity difference (SV)  across the intervace), u,/V = E(Ri,), with Ri, 



Turbulent entrainment 45 1 

also defined using V. When the data are replotted in this way (and proper corrections 
are made for sidewall friction), the data from the two experiments do agree, and the 
form of the deduced entrainment function E(Ri,) is close to that previously obtained 
by Ellison & Turner (1959) for gravity currents, and approximated by (23). 

The formulation in terms of V implies that  conservation of mean momentum is 
the most important constraint on entrainment in these experiments (and in the 
analogous oceanic case), and it is consistent with our earlier emphasis on the large- 
scale motions. Using the momentum equation d(hV)/dt = vi = const. with the 
conservation of buoyancy relations (26) gives 

where 
n =( 3 

if C2 = $V2h2 (linear stratification), 
1 ifC2 = const. (homogeneous layer). 

Thus the observed factor-of-two difference in the entrainment rate E,  defined using 
v* is also predicted by this model. The difference arises because, if Ri, is to stay 
constant in the linearly stratified case as C2 increases, the whole layer must be 
accelerated to the velocity V = (C2/Riv)i, not just the entrained fluid. In  the 
two-layer case, on the other hand, the stress is only required to accelerate the 
entrained fluid to velocity V, which is constant. 

Note that the use of V or 6V as a velocity scale allows other physical processes 
to be incorporated into the calculation. For timescales such that the Earth’s rotation 
is important, for instance, the momentum equation in rotating coordinates must be 
used to calculate 6V for the oceanic mixed layer as a function of v* (and also of h, 
the Coriolis parameterfand time). It can be shown that rotation dominates the shear 
at  the base of the mixed layer for timescales comparable with half a pendulum day, 
and that tiV is then proportional to vi. It is thus not true that all velocity scales 
are equivalent, and certainly only in special circumstances is V proportional to v*. 

The second type of conceptual and laboratory model of mechanical-mixing effects 
considers the situation where there is no mean flow, and turbulent kinetic energy is 
produced at a plane surface on scales much less than the depth of the layer. A 
convenient way to study this case is to use a vertically oscillated grid of solid bars 
to generate the turbulence, and the first experiments designed to quantify this 
process were summarized by Turner (1973). There have been many more experiments 
since then, and some controversy over their interpretation, but a clearer picture 
seems now to have emerged. In  evaluating the present state of this subject, and 
reviewing the earlier work, the paper of E & Hopfinger (1986) is particularly helpful. 
Figure 10 is reproduced from their paper. 

This mixing rate across the density interface bounding the stirred layer can again 
be put in the form (25), with a Richardson number based on the density difference 
Ap and appropriate velocity and length scales expressing the major balance of forces. 
Explicitly, Thompson & Turner (1975) suggested that in this case the scales used to 
define the overall Richardson number Ri, = gApl,/puf should be the integral 
lengthscale 1, of the turbulence, and the r.m.s. value u1 of the horizontal component 
of turbulent velocity, both measured near the interface. These are more appropriate 
than overall parameters such as the velocity of the stirrer and the layer depth h but 
1, and u1 can be related to the latter in particular experiments. For grids of square 
bars, with a spacing M/d = 5, where M is the mesh width and d the bar size, 
Hopfinger & Toly (1976) showed that the available experimental results can be fitted 
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FIQURE 10. The stirring-grid experiment of E & Hopfinger (1986). This streak picture (exposure 
time 1 s )  shows the well-mixed surface layer with large turbulent motions, and smaller internal- 
wave motions in a constant-gradient layer below the interface. 

by ul/fS = C S ~ M ~ Z - ~ ,  where f is the frequency of oscillation and S is the stroke, and 
C is a constant which is about 0.30. The most important part of this result is the z - I  

decay of r.m.s. velocity with distance z from the grid midplane. The integral 
lengthscale 1, increases linearly with distance z from the grid, with a constant of 
proportionality of about 0.10 when S / M  is less than about 0.2. The typical Reynolds 
number u1 1,lv in Thompson & Turner’s (1975) experiment was z 50, which was large 
enough for viscous effects to be negligible, and the value in subsequent experiments 
has been even larger. 

Using these scales, the laboratory data are well described by the relation 
uJl, = f(Ri,, Pe) where Pe = u1 l l / K  is a PBclet number based on ul, 1, and the 
molecular diffusivity K .  When Ri, > 7 and P e  > 200, which can be achieved in 
laboratory experiments using salinity differences, the explicit form obtained is 

where K is a constant. In this limit, entrainment is controlled by non-diffusive 
processes, and according to Crapper & Linden (1974) the interface thickness h is then 
a nearly constant multiple of I ,  (h  = 1.51, approximately), though more recent work 
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suggests that it may decrease slowly with increasing Ri,. Field measurements of 
temperature profiles through the base of the surface mixed layer in the ocean, 
however, often reveal interfaces much thinner than this, and current laboratory 
observations by E .  J. List and collaborators (personal communication) have revealed 
the same features in oscillating-grid experiments. These are evidence for active 
mixing events which are sharpening the interface locally, and they suggest the need 
for caution in defining the thickness of an interface. 

The mechanistic explanation for the -+-power law given by Linden (1973) still 
seems to be sound. By projecting vortex rings against an interface, he showed that 
mixing takes place during the recoil event, so that turbulent kinetic energy is made 
available for mixing at a rate set by the recoil velocity 6/rB, where 6 is the 
penetration depth of the eddies S K puT/gAp and rB cc (p l , /gAp) i  is the response time 
of the interfacial layer to  disturbances of lengthscale 1, ; it does not depend directly 
on the overturning timescale of the eddies. Equating the rate of supply of kinetic 
energy pu;S[rB to the rate of change of potential energy gAphdhldt then gives 
u,/ul K R Q .  Another significant result is the observation that entrainment of fluid 
(in one direction) into a mixed layer is independent of whether the other layer is 
stirred or not (though of course the flux entrainment velocity EF as defined following 
(13a)  will be doubled if both layers are stirred). This is because the mixing events 
on each side are so rare that they can be considered statistically independent. 

E & Hopfinger (1986) have recently carried out a definitive set of measurements 
using both two-layer and constant-gradient systems, and have accurately confirmed 
the form (28) a t  high values of Ri, and Pe, with an exponent 1.54 & 0.05 and K x 3.8. 
These measurements also verify the previously suggested frequency dependence, and 
they seem conclusively to  discriminate against the deepening rates predicted by the 
-:-power law resulting from Long’s (1978) phenomenological theory and tested by 
Fernando & Long (1983). The latter papers contain the suggestion that entrainment 
and mixing are caused by the generation and intermittent breaking of internal waves 
in the interfacial layer, which will have the same timescale as the recoil mechanism, 
but there are also other detailed assumptions which are evidently not borne out by 
the measurements of E & Hopfinger. It seems likely that the controversy generated 
by these different viewpoints will continue for some time. 

At low PBclet numbers ( < 200, which were obtained using temperature differences) 
but still with Ri, > 7 ,  molecular diffusion affects the structure of the interface, and 
the entrainment relation is different because the turbulence is encountering a 
different density gradient locally. (The importance of including the effects of diffusion 
on the interfacial temperature gradient has been demonstrated by Denton & Wood 
1981, who have studied convectively driven entrainment a t  low Pe.) There is now 
a diffusive core across the centre of the interface, and h/ l  increases as Pe is reduced 
(see figure 11 ). The mixing rate for heat found by Turner (1968) in this range of Pe 
was greater than that for salt, and the power-law dependence is now close to 
uJul oc Ri;l. Though this is the form suggested by a simple energy argument (see 
below) it is probably due to  a much more complicated interaction of diffusion and 
entrainment processes, and is not as fundamental as the -+result. 

At low values of Ri, (< 7)  the entrainment rate becomes independent of Pe and 
all the experimental curves run together. As Ri, decreases, the entrainment rate 
‘flattens out’ and depends less strongly on Ri,. Though it is tempting to seek 
explanations for various power laws in different parameter ranges it is probably 
better to  regard this as a continuous transition (cf. Narimousa et al. 1986). In  this 
range of Ri,, a turbulent eddy entering the interfacial layer tends to  thicken the 
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FIGURE 11. The non-dimensional mean interface thickness h/ l  plotted against the PBclet number 
Pe, for experiments in which the layers on both sides of the interface were stirred with oscillating 
grids (from Crapper & Linden 1974). 

interface, rather than sharpening it as it does at  high Ri, - there is an excess of 
mechanical energy, and both the stratification and diffusion become unimportant. 
Entrainment takes place by an engulfment process just as it does in a non-stratified 
fluid. 

As Ri, increases, wave motions must be taken explicitly into account, both at  the 
interface itself and in any stratified region adjoining a well-mixed layer, in any full 
explanation of the entrainment mechanism, and this aspect is discussed further in 
$8.3. However, the recent experiments of E & Hopfinger (1986) (with Ri, > 7)  did 
not detect any difference in entrainment rates between two-layer experiments and 
those starting with a linear gradient. This suggests that energy radiated away from 
the interface by internal waves does not have a significant effect on the mixing or 
on the deepening rate of the upper mixed layer (contradicting a previous conclusion 
of Linden 1975). It may still be important, however, as a source of wave energy for 
the deep ocean, though the existence of a mean shear flow in the upper layer probably 
also has a significant influence on internal-wave generation. 

The final group of processes to be considered here is related to the effects of 
buoyancy fluxes of both signs on the development of a mixed layer. When there is 
a net heat (buoyancy) input, at the sea surface for example, a stabilizing density 
gradient is set up, which has an inhibiting effect on the mixing by mechanical inputs, 
as discussed above. With a constant stabilizing buoyancy flux B = qp’w’/p from 
above (i.e. a constant rate of heating right a t  the surface) and simultaneously a fixed 
rate of supply of kinetic energy, assumed to  be proportional to u$ where u* is the 
friction velocity, there can be a balance between the mechanical energy and the work 
required to mix buoyant fluid downwards. The depth of the surface layer can then 
become steady while it continues to warm. This steady depth depends on u: and 
on the rate of decay of the turbulent kinetic energy with depth, as well as on B 
(Hopfinger & Linden 1982). The process involves no entrainment across the bounding 
interface below, across which there is an increasing density difference: all the 
turbulent energy either decays or is used in stirring buoyant fluid from the surface 
down to this depth and increasing the potential energy. 

On the other hand when there is a net cooling at the sea surface, a t  night or during 

__ 
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the winter, convective motions can extend to the depth of the mixed layer and 
contribute to entrainment across the thermocline below. The extent to which the 
deepening is ‘penetrative’ or ‘non-penetrative’ - i.e. whether the process can be 
described as being one of ‘entrainment ’ rather than just ‘encroachment ’ into an 
existing density structure - has been a subject of debate. The question is also of 
importance in the complementary case of an atmospheric surface layer during 
conditions of strong heating, and the early work on this has been discussed by 
Deardorff, Willis & Stockton (1980), who have paid particular attention in their own 
laboratory experiments to the ‘entrainment zone ’ itself, i.e. what we have previously 
loosely described as the interface. 

The experiments of Deardorff et ab. (1980) were conducted in water, with the 
stratification (either a step or a gradient above a well-mixed, thermally convecting 
layer) produced using temperature differences. The natural velocity to use in this case 
is the turbulent velocity scale for a convectively mixed layer of mean depth 6, defined 

where B is now an unstable buoyancy flux. The corresponding overall Richardson 
number is then Ri, = gLAp/pw$. The observed entrainment rates over a range of Ri, 
values in the laboratory experiments (7 < Ri, < 100 which includes most of those 
to be expected for atmospheric or oceanic mixed layers) can be represented by 

w,/w, = 0.25Ri;’. (30) 

In spite of the use of temperature differences to produce the stratification in these 
experiments, the Pkclet number was high, in the terms used in the discussion of 
mechanical mixing. One might therefore have expected a ---power law, according to 
the previous arguments, and this is not excluded by the scatter of the data, though 
(30) gives a somewhat better fit. There was no evidence for a reduction in mixing 
rate due to wave energy propagating into a gradient region outside the mixed layer. 
These laboratory experiments indicated that there was indeed true entrainment at 
the top of the mixed layer, i.e. a definite step (or region of larger gradient) was 
produced during mixing into a stratified fluid above, rather than a direct transition 
from the homogeneous layer to the original gradient (the definition of 
encroachment). 

It remains to sketch how the ideas about entrainment and the laboratory 
measurements described above have been incorporated into time-dependent models 
of the oceanic thermocline or atmospheric inversion. Virtually all of these models are 
based on energy arguments, which balance the inputs of kinetic energy against 
changes in potential energy plus dissipation. Thus they largely ignore the evidence 
for the Ri;2 dependence of mixing on Richardson number, and substitute the more 
convenient Riil form instead, which also receives limited support from the 
experiments on convectively stirred layers (equation (30)). The most arbitrary 
feature is the parameterization of dissipation. It is generally assumed (or implied) 
that the energy available for entrainment is some fixed fraction of that produced by 
each type of source and that these are additive. Laboratory and field data obtained 
on occasions when just one process was acting alone are used to evaluate the 
constants of proportionality. This is the view taken by Fischer et al. (1979), for 
example, and they have been very successful in applying such a composite model to 
a wide range of mixing problems in reservoirs, with numerical constants fixed in 
advance of particular applications. There have been some well-documented and 
successful examples of the application of models developed from that of Kraus & 
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FIGURE 12. The heat content in the ocean surface layer as a function of surface temperature T,  
derived from observations made a t  ocean weather station Echo. The heat content is integrated 
from the surface down to a standard reference level T,; months are marked along the curve. (After 
Gill & Turner 1976). 

Turner (1967), using a parameterization in terms of the surface wind stress and 
buoyancy flux with observed values of wind speed and radiation, to predict the 
time-dependent depth and temperature of the upper mixed layer of the ocean over 
periods of a few weeks. 

Gill & Turner (1976) concluded that the Kraus-Turner model also works well on 
the seasonal timescale and, in particular, correctly reproduces the phase relationships 
between the dates of maximum heating, maximum surface temperature Ts and 
minimum depth. It predicts a realistic hysteresis loop in a plot of T, versus heat 
content in agreement with observations such as those shown in figure 12. The best 
agreement with the observed sea-surface temperature is obtained, however, only 
when the theory is modified to allow potential energy to decrease, and the penetrative 
convective mixing to be zero, during the cooling period. The structure of the 
thermocline is also not very well represented by these integral models. 

The need to make this kind of arbitrary change in the physical assumptions, in 
spite of the result suggested by the laboratory experiments of Deardorff et al. (1980), 
clearly indicates that  something is lacking in our understanding of the entrainment 
process at least on a geophysical scale, and probably also a t  the fundamental level. 
But it is worth standing back again, as we did in $4 in discussing (15) for plume rise, 
to ask why the modified entrainment assumption relating the mixing to the 
Richardson number works as well as i t  does, in spite of the demonstrable inaccuracies 
in the formulation. It is particularly surprising that when the mixing is dominated 
by a few sporadic events, as i t  is a t  high Ri, the entrainment rate can be represented 
by a function of Ri based on mean quantities, rather than on some higher moments 
of the turbulence. 

The length and velocity scales, and the density differences, vary widely between 
the laboratory models and geophysical flows. The results show that the entrainment 



Turbulent entrainment 457 

FIGURE 13. Spark-shadowgraph of a mixing layer between streams of helium (upper) and nitrogen 
(lower), showing the dominance of the large coherent structures. The experiment was conducted 
with the interface vertical, but the photo has been rotated by 90" for convenience of reproduction. 
(From Brown & Roshko 1974.) 

velocity should first be scaled with a velocity representative of the large eddies near 
the entraining interface. The buoyancy-inertial force balance is contained in some 
form of Richardson number, which varies over several orders of magnitude in both 
the laboratory experiments and geophysical examples. The entrainment rate, relative 
to the reference velocity, is a strong function of the Richardson number, and i t  is 
this fact, rather than the precise functional dependence, which makes the overall 
predictions of the models so satisfactory, a t  least in relation to the accuracy of the 
present data. More sophisticated measurements will undoubtedly require more 
refined theories. 

Thus we proceed to the more detailed discussion of the entrainment mechanisms 
in the next section, seeking a more fundamental understanding of these processes but 
recognizing a t  the same time that subtle differences between alternative models may 
not lead to an immediate improvement in practical prediction methods. 

8. The mechanism of entrainment 
8.1. Homogeneous Jluids 

Various studies of the physical processes involved in entrainment and mixing will 
now be considered briefly, first for a homogeneous fluid and then with density 
stratification. These theoretical and experimental examples have been chosen 
because of the light they shed on the fundamental processes, and on the problems 
requiring further work, not necessarily because of their direct applicability in the 
geophysical contexts which have guided the choice of topics in other sections. 

The dominance of large-scale engulfment as the primary mechanism of entrainment, 
the basic postulate on which the entrainment formulation is based, receives strong 
support from recent studies of the constant-density mixing layer. Both laboratory 
and associated numerical work on turbulent flows, and in particular the shear layer 
between parallel streams, have become very sophisticated, and there is a rapidly 
growing body of relevant research. Coherent structures, in the form of orderly 
growing vortex motions, are now known to be intrinsic features of many turbulent 
flows; these have been studied visually (see figure 13), and using conditional sampling 
and averaging of hot-wire measurements. The reviews of Cantwell (1981) and KO & 
Huerre (1984) can be consulted for fuller references and details of current work, but 
the results of just two of the groups active in this area will be used to illustrate the 
ideas. 
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FIGURE 14. Two views of entrainment, according to Corcos & Sherman (1984). (a )  The growth of 
the cat’s eye a t  (dimensionless) times 7 = 1.0,2.0,2.5.  ( b )  The visual record of ‘engulfing’, showing 
the successive positions of the interface at the same times, with fluid on one side shaded. The arrows 
are segments of streamlines, and are of arbitrary length. 

I n  a series of papers, Corcos and his collaborators (e.g. Lin & Corcos 1984) have 
investigated deterministic, time-dependent numerical solutions of the Navier-Stokes 
equations describing the shear flow in a mixing layer a t  modest Reynolds numbers. 
They have successfully reproduced the observed roll-up of the vortex layer to form 
‘cat’s-eye ’ vortices, and the subsequent subharmonic growth leading to pairing, 
which they show is preferentially two-dimensional. They clearly separate the concept 
of entrainment from that of the subsequent small-scale mixing and diffusion, and 
show that it is the initial ‘engulfing’ process associated with rolling-up and pairing 
of eddies that accounts for the observed linear time-averaged growth rates of the 
mixed layer. One definition of entrainment per unit span (from both sides of the 
layer) is just the rate of increase of the recirculating area of the cat’s eye, and we 
note that the entering fluid is mostly irrotational. The shape of the cat’s eye based 
on this view, and the calculated, more graphic record of the ‘engulfing’ a t  the 
corresponding times, are shown in figure 14, taken from Corcos & Sherman (1984). 



Turbulent entrainment 459 

Gaster, Kit & Wygnanski (1985) have used another approach to show that neither 
viscosity, nor small-scale turbulence, has a significant effect on the development of 
the very unstable waves that arise in mixing-layer shear flows. They have applied 
inviscid stability theory to the mean profile in a slowly diverging flow, and have 
reproduced the entire development of the wave amplitude observed in their experi- 
ments on a mixing layer which had similar mean-velocity profiles and a linear spread 
with distance. The measured cross-stream distribution of fluctuating velocity, 
associated with the large-scale organized structures, was also adequately described 
by this theory, in both magnitude and phase. The overall conclusion from all such 
studies is that the growth rate measured for fully developed turbulent mixing layers 
can be closely matched by growth rates deduced from calculations that take no 
account of small-scale turbulence. This gives powerful support to the entrainment 
hypothesis in its original form. 

Theories that have emphasized the microscale ‘entrainment interface ’ bounding 
the convoluted large-scale eddies should be mentioned. Phillips (1972) pursued the 
consequences of a description in which entrainment is regarded as essentially a 
viscous process, with the speed of advance of the interface bounding the turbulent 
fluid being proportional to the Kolmogorov velocity scale, u, - ( v E ~ ~  (where v is the 
kinematic viscosity and .so the local dissipation rate), augmented by micro- 
convolutions on scales comparable with the thickness of the interface itself. The more 
recent experimental results described above have shown that ‘engulfment ’ of outer 
non-turbulent fluid is the dominant process, so that much of the ‘entrainment 
interface ’ as defined by Phillips lies inside the region that has already been effectively 
entrained. The viscous diffusion of vorticity is thus important for the final digestion 
of external fluid into the turbulent flow and the evolution of the smaller-scale 
motions, but not in determining the overall rate of mixing. Some elements of this 
viscous diffusion mechanism could still be important for understanding mixing across 
density interfaces, at which the stabilizing buoyancy forces inhibit the formation of 
massive convolutions. 

Another kind of viscous diffusion model of entrainment was discussed by Max- 
worthy (1972). He examined experimentally and theoretically the growth of vortex 
rings and the ‘bubble ’ of fluid moving with them. As well as being of interest in the 
context of entrainment into thermals, they can be regarded as models of turbulent 
eddies thrusting out across a turbulent-laminar interface. His observations suggested 
the picture of a turbulent interface as an unsteady corrugated surface over which an 
outer irrotational fluid flows, and within which all of the vorticity is contained. As 
vorticity diffuses across the interface into the irrotational fluid, the fluid thus affected 
can no longer flow over the surface, but is entrained locally on the back side of 
corrugations. A laminar theory based on the incorporation of the diffusion layer 
growing to thickness of order (vt’)i, where t’ is the time for a particle to traverse the 
distance round the ‘bubble ’, was developed explicitly, with an allowance for the loss 
of some vorticity into the wake. This loss of vorticity (and of momentum) into the 
wake is even more significant in the case of turbulent vortex rings (Maxworthy 1974). 
Nevertheless, turbulent rings were observed to grow linearly with distance, with 
01 z 0.01, a result consistent with the entrainment assumption (16) which was used 
earlier for turbulent thermals. Note that in the case of the non-buoyant vortex 
ring the momentum (or impulse) is decreasing, rather than increasing as it does in 
a buoyant thermal or vortex ring. There is no result equivalent to (19), which 
relates the growth to the overall parameters rather than to the local turbulence, 
and clearly (19) cannot be used in the limit F ,  = 0. The early hopes that these 
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growth models of simple vortex structures would shed more general light on the 
fundamental mechanisms of entrainment by the large eddies of turbulence do not 
seem to have been realized, again probably because of the dominant importance of 
the essentially inviscid engulfing motions. They do still, of course, retain their more 
direct interest in the context of entrainment into thermals and buoyant clouds. 

8.2. Large density differences 
Now seems an appropriate point to introduce a related topic, the effect of large 
density differences on entrainment (but first without any explicit buoyancy effects 
on the mixing). Batchelor (1954) discussed a few qualitative experiments on thermals 
with large density differences, produced by releasing increasingly light, miscible 
liquids into water. The smallest rate of spreading occurred for the lightest interior 
fluid (initial density 0.63 g/cm3), and Batchelor attributed this to the effect of inertia. 
Explicitly, he suggested that as there is a smaller inertia associated with the 
turbulent interior motions, they therefore cannot penetrate so easily into the denser 
outer fluid and entrain it. The arguments leading to (19) have, however, raised the 
possibility that the lesser spread in these particular experiments might have been 
associated with the generation of a higher circulation during the acceleration from 
rest. 

The overall effects of inertia have been incorporated explicitly into the theory of 
turbulent thermals in homogeneous surroundings by Escudier & Maxworthy (1973). 
This extends the entrainment theory developed from (16) to include arbitrarily large 
density differences, with the virtual mass of the environment and the inertia of the 
interior and exterior fluid both taken into account. They have considered the 
accelerating initial stage (where the entrainment assumptions are more questionable) 
and the later decelerating phase. As already noted in connection with (16), their 
modified mass-conservation equation still implies a linear angle of spread with 
distance at all times, equal to the entrainment coefficient. The momentum equation 
leads to 

where u is the velocity at  time t and g the acceleration due to gravity, is the 
constant density of the environment and p( t )  the (local) density of the thermal, and 
k is the virtual-mass coefficient ( k  = t for a sphere). It follows from (31) that light 
thermals will always have an initial acceleration larger than heavy ones. For 
example, for thermals very much lighter than the environment (so that p,/p, -to), 
and those twice as dense initially (p,/p, = 2 ) ,  the ratio of the accelerations is 5 ,  even 
though the density difference in the two cases is the same. 

This approach leaves unanswered the question of any inertial effects on entrainment 
as such, and the processes that determine a. Baines & Hopfinger (1984) have used a 
local-entrainment argument to suggest that axisymmetric and two-dimensional 
thermals with large density differences should spread at a different angle in the early 
stages of the motion where the Boussinesq approximation is not valid. They base 
their mass-conservation equation on both the mass and the momentum of the fluid 
inside the thermal, with the density of the environment used as an explicit extra 
parameter because, they argue, this directly affects the mass via entrainment, 
whereas the interior density is already included in the other parameters; By this 
means, the physical basis of which is far from clear, they break away from the 
constraint of a constant linear spread, and deduce that the rate of growth of a heavy 
thermal is always larger, and of a light thermal always smaller, than the Boussinesq 
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case. This deduction receives limited support from experiments reported in the same 
paper, but the accelerating region, extending over only a few diameters, is too small 
for the measurements to be definitive. Our earlier discussion has suggested in fact 
that it is most unlikely that any entrainment argument based on similarity will be 
applicable to thermals in this region. A more detailed description of the accelerating 
stage is probably needed, in order to determine the circulation that is generated 
during this time and on which the whole of the subsequent behaviour depends. 

A classic paper on plane turbulent mixing layers is that by Brown & Roshko 
(1974), a photograph from which is reproduced as figure 13. They explicitly addressed 
the question of the effect of large density differences on mixing rates, using streams 
of nitrogen and helium having a density ratio of 7 .  The flow was vertical, so that only 
the dynamic effects of the density difference were relevant, and no buoyancy forces 
entered, at  least for the initial instability. (It remains a possibility, however, that 
buoyancy played a role once the vortices had wound around one another.) These 
spark-shadowgraph pictures were among the first to document the coherent struc- 
tures, and the eddy roll-up and merging processes described earlier in this section. 
They compared cases where plUl  = p2Uz, and the mass flux was the same, or 
plU: = p2U& so that the dynamic pressure was the same in both streams, with one 
where plU; = 49p2Ui. ( U J U ,  = 1/7 in the latter two cases, but the two gases were 
in the opposite streams.) The mean rate of spread of the mixing layer with helium 
in the faster layer was approximately a factor of 2 greater than with nitrogen in the 
faster flow (with an intermediate rate of spreading for nearly equal-density gases, 
nitrogen and air). Mean-density and velocity profiles obtained for the same flows 
supported these visual measurements of the thinning of the mixing layer with 
increasing density on the high-speed side, though the spreading angle of the density 
profile was greater than that for the velocity. (A much greater decrease of spreading 
rate is observed when the faster stream is supersonic, but this has been attributed 
to a compressibility effect, which was not relevant in the experiments described 
above.) 

There has been no physical explanation of these results, and very little work 
following them up, though it has been suggested by Chandrsuda et al. (1985) that 
they represent the behaviour of transitional flows, rather than fully turbulent mixing 
layers which rapidly become three-dimensional. (Most of the subsequent studies of 
mixing layers with density differences have concentrated on the buoyancy effects, 
using horizontal interfaces.) The dependence on the density difference is in conflict 
with the measurements and theoretical arguments developed for the convecting 
cloud or ‘thermal’ case, which led us to expect that a larger momentum associated 
with the denser flow would increase the entrainment rate. Though for most 
geophysical purposes the Boussinesq approximation gives adequate accuracy, the 
problem of mixing between fluids with large density differences is a fundamental one, 
which merits further attention. 

8.3. Stably stratified jluids 

When there is a region with a vertical density gradient or a horizontal density 
interface bounding a turbulent layer, different fundamental questions need to be 
considered. The picture of entrainment as simply the engulfment of external fluid by 
large eddies is no longer suficient and, particularly when there is an interface, the 
dynamical situation is not just a small perturbation from turbulence in a homogeneous 
fluid. The response of the stratified region to the imposed turbulence, and the effect 
of this on the turbulent motions themselves, need to be taken into account. As the 
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Richardson number becomes large, or more explicitly, when LN/ U % 1 where U and 
L are the velocity and length scales of the imposed turbulent motions and N is the 
buoyancy frequency of the stratified layer, the perturbations at the boundary 
between the turbulent and non-turbulent fluid become very small. The interfacial 
layer still contains small-scale shearing and wavelike motions and, as mentioned 
briefly in $7,  entrainment takes place through a mechanism that can be thought of 
either as the recoil of the interface after it has been distorted by an impinging eddy, 
or as internal wave breaking. In either case wisps of fluid are ejected into the 
turbulent layer, and mixed thoroughly first by turbulence and finally by molecular 
diffusion. 

This interaction between turbulence and the gradient region has been examined 
theoretically by Carruthers & Hunt (1986). They have considered initially the case 
of a homogeneous turbulent region adjoining a gradient region (with no density step), 
and have for the first time properly matched the turbulence to the wave motions in 
evaluating the velocity fluctuations near the interface. Their theory shows that eddies 
with frequencies of the same order as N are least affected by the stra,tification, and 
that the r.m.s. vertical velocity is greatest at  the interface when LNIU x 2. The flux 
of energy into internal waves increases with this parameter, and is a maximum when 
LN/  U x 6. This value has been identified by E & Hopfinger (1986) with the Richard- 
son number above which the Ri-: power law is valid, i.e. the point at  which the 
buoyancy timescale characteristic of eddy recoil becomes relevant, rather than the 
eddy-overturning timescale. In the limit of large stratification N+ co the theory 
shows that the effect of the stable layer on the turbulent region is the same as that of 
a rigid surface, as previously studied by Hunt & Graham (1978). Near a solid wall, the 
fluctuations of normal velocity decrease monotonically, while the transverse velocity 
components become larger than their ‘free-stream ’ values (an effect which can be 
visualized in terms of the flattening of eddies near the wall). McDougall (1979) made 
measurements through a density interface between two well-mixed layers which re- 
vealed some of the same features. His measurements showed in particular that the 
centre of the interface remained less active, suggesting that the turbulent eddies 
did not often penetrate to the centre but were halted and squashed at  the edge of the 
interface. 

The mechanism of entrainment by a single ‘eddy’ a t  a density interface has 
recently been considerably clarified by the experiments of Kumagai (1984), who has 
also consolidated and illuminated a lot of previous work. He considered the time 
evolution of a two-layer saltrfresh-water system when a dense plume of salt water 
was supplied a t  the free surface. The ‘filling-box’ process described by Baines & 
Turner (1969), which produces a stable stratification in the upper layer, is modified 
by the entrainment through the end of the plume which impinges on the interface. 
Kumagai also developed a theoretical model which takes both processes into account, 
and which describes well the observed vertical density profile, the time evolution of 
the density difference across the interface, and the time when the plume finally 
penetrates through the interface. Of special interest in the present context is the 
measured entrainment rate deduced from changes in thickness of the upper layer. 
This was expressed as a function of a Froude number Fr, which is equivalent in this 
case to the inverse square root of the interfacial Richardson number previously used 
in (28). The functional dependence is close to Fr3 at small values of Fr (cf. Ri$ at 
large Ri,,), and the power gradually changes as Fr increases until the entrainment 
approaches a finite limit, just as in the grid-stirring experiments. This result therefore 
gives further support to the -$-power-law dependence of entrainment rate on 
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Richardson number in the high-Ri, limit, and indirectly (for another form of 
individual eddy impinging on the interface) to the eddy recoil mechanism proposed 
by Linden (1973) to explain it.  

The same data have been interpreted by Kumagai (1984) in terms of the buoyancy 
flux across the interface, non-dimensionalized by the buoyancy flux in the plume. 
This can be shown to be equivalent to the ratio of the increase of potential energy 
due to the redistribution of the original (step) density profile to the potential energy 
made available by the buoyancy input in the plume, or alternatively to a kind of 
flux Richardson number R, (if the energy in the plume is regarded as first converted 
to kinetic energy). This ratio varies systematically as a function of Fr, with a maxi- 
mum of about 0.17 a t  Fr = 0.46 (Ri, x 5 )  and a sharp decrease at larger and smaller 
Froude numbers. Thus the energy supplied by the plume is used most efficiently a t  
this particular intermediate Froude number. The lower efficiency at higher Fr is asso- 
ciated with large excursions of the interface, and a thickening as the condition for 
breakdown is approached, whereas at low Fr the 'recoil ' mechanism is operating at 
a thin interface, which distorts less and less as Fr decreases. This maximum in the 
plots of energy ratio as a function of Fr, or R, as a function of Ri,, has been shown 
by Linden (1979) to be a general feature of a wide range of mechanical, as well as 
convective mixing processes. Referring back to the grid-stirring experiments (equation 
(28)), for example, R, and Ri, are related by R, = (u,/u) Ri,. Using a power-law fit 
to the experiments, u,/u cc Ri;" gives R, cc Rii-". When n < 1 (at low Ri,) R, is 
an increasing function of Ri,, whereas with n = $ (at high Ri,) R, is a decreasing 
function of Ri,. The point where n = 1 corresponds to the maximum at which the 
simple overall energy argument applies. 

As a final example of the effect of stratification on stability and mixing a t  an 
interface, consider an interfacial shear layer, across which there are sharp steps in 
both velocity and density. Energy considerations similar t o  those discussed above 
are also relevant in this case, and provide a limitation on the mixing which is not 
available for a shear layer in a homogeneous fluid. Experiments by Thorpe (1973) 
in a tilted tube containing two fluid layers with a sharp interface, and by Koop & 
Browand (1979) using two streams of fluid flowing together past a splitter plate, have 
carefully documented the nature of the instability. When the velocity and density 
profiles are similar, these flows become unstable when the minimum value of the 
gradient Richardson number falls below (whereas in the limit of zero density 
difference, all disturbances are unstable), and the fastest growing instability takes 
the form of regular Kelvin-Helmholtz 'billows '. The array of billows becomes 
unstable to  subharmonic disturbances (much as it does in the case of the unstratified 
shear layer shown in figure 13) causing a rolling-up and merging of the original 
vortices. 

The growth in the stratified case is, however, limited by an energy constraint. The 
system of vortices stops growing and then collapses, with much small-scale motion 
driven by convective overturning, accompanied by horizontal interleaving of mixed 
regions, and a rapid damping of the turbulence. Suppose that initial discontinuities 
of velocity AU and density Ap are transformed by the process into linear gradients 
of velocity and density over the same interfacial depth 6 (which is a good represen- 
tation of what is observed in practice). Conserving mass and momentum, and 
equating the changes in kinetic and potential energies before and after the mixing 
events leads to 
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The process is not perfectly efficient, however, and energy dissipation by viscosity 
leads to a much smaller observed maximum value for the thickness. The numerical 
factor varies with the initial Richardson number Ri of the interface, but Sherman 
et al. (1978) suggest using S = 0.3p,(AU)2/gAp as a typical result for small values of 
Ri. This is in good agreement with the predictions of a theoretical model developed 
by Corcos & Sherman (1976), which considers the destruction of vorticity in the 
vortex cores by entrainment of stratified ambient fluid and the consequent production 
of a torque opposing the rotation. 

There are two important implications of this result for the entrainment problem. 
First, the instability is self-limiting; unless the shear is increased, no further K-H 
instability can occur, since the interfacial Richardson number in the thickened state 
is higher than that required for instability. Secondly, the amount of vertical mixing 
that these interfacial K-H instabilities alone can account for is small. Only when 
there is an additional turbulence-generating mechanism in the homogeneous layers 
on each side of the interface will i t  be possible to transport material properties across 
the layers and also to produce the thinning of the interfaces which is required before 
further shear instabilities can develop. A broad range of scales of turbulent motion, 
in entraining shear flows or stirred layers, is thus probably an essential element in 
distinguishing ‘entrainment ’ from purely interfacial instabilities. 

9. The effect of viscosity differences on entrainment 
Apart from the studies reported in $8.2, which examine the effect of large density 

differences, there has been little fundamental research on mixing between streams 
with very different physical properties. I n  this section we discuss a recently studied 
class of flows in which the extent of mixing between a turbulent fluid and its 
surroundings depends on the viscosity ratio between the two fluids. There has been 
some work reported in the engineering literature on mixing between very viscous 
fluids, including a discussion of viscosity differences, but much of this has been in 
relation to specific industrial stirring devices. The context for the experiments 
reported here is a geological one, the injection of a new pulse of magma into a magma 
chamber from below in the form of a ‘fountain’ (Campbell & Turner 1985, 1986), but 
the results have a wider significance. 

When a fully turbulent fountain (Re, 2 400) of fluid of low viscosity v1 is injected 
upwards into a less-dense fluid of higher viscosity ( v 2 ) ,  the two fluids may mix 
thoroughly or not a t  all, depending on the relative magnitudes of the viscosity ratio 
and the input Reynolds number Re, = wd/v, ,  where w is the mean velocity and d is 
the diameter of the input pipe. When the viscosities of the input and host fluid are 
comparable (with salt solution injected upwards into fresh water, for example) 
there is appreciable turbulent entrainment, so that as the fountain rises and falls 
back in an annular region surrounding the input pipe i t  builds up a stratified layer 
with a volume much greater than that of the added fluid (figure 15). However, when 
glycerol (with viscosity about lo3 times that of water) is used as the host fluid, and 
a denser salt solution (K2C03) is injected at a Reynolds number Re, of about lo3, 
mixing is completely suppressed (figure 16). The internal flow in the fountain is still 
fully turbulent, but the boundaries with the upper viscous layer remain smooth, and 
the depth of the fluid building up a t  the bottom of the tank corresponds exactly to 
the rate of addition a t  the source, with no entrainment. 

The external parameters in terms of which the mixing must be described are w, 
d ,  v1 and v2 (already introduced) and also g’ = gAp/p where Ap is the density excess 
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FIGURE 15. A ‘fountain’ formed by the input of dense salt solution a t  the bottom of a tank 
containing fresh water. Note the turbulent nature of the flow within the fountain, and the 
development of a stratified layer a t  the bottom of the tank. 

FIGURE 16. A fountain of K,CO, solution injected upwards into much more viscous glycerine. 
Though the internal flow is turbulent, there is no mixing with the surrounding glycerine, so that 
the interface remains smooth. Compare with figure 15. (The annular plume at a larger radius is 
a double-diffusive effect, caused by the rapid diffusion of water across the interface into the 
glycerine layer.) 
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of the injected fluid. In addition to a Reynolds number and the viscosity ratio there 
is a third dimensionless parameter, which can be taken as an internal Froude number 
w/(g’d)t. Alternatively one can use a formulation in terms of the overall source 
parameters (cf. (2) and (3)), the momentum flux M a  w2d2 and the negative 
buoyancy flux B a g’wd2, to define an overall lengthscale I and velocity scale v for 
a turbulent fountain : 

1 cc il@B-i, (33) 

v a M-t&. (34) 

The total height 1, which fountains with ul = u2 achieve before falling back is 
proportional to (33), and the constant of proportionality (c, say) has been evaluated 
by Turner (1966). 

The product of (33) and (34) is independent of B,  so that Re, is an appropriate 
Reynolds number to describe the whole flow, not only the input conditions. The 
fountain geometry thus seems a particularly useful one for a study of viscous effects 
(in contrast to a turbulent plume, say, for which the Reynolds number increases with 
distance). B enters oaly indirectly through its effect on the height of rise. In the 
experiments described below both Re, and Ap and hence B were kept fixed for each 
series of experiments, and thus the dependence of entrainment on u2/u1 alone was 
tested in a nearly fixed geometry. In  principle, the constant c1 in (33) relating El to 
the input parameters could also depend on the viscosity ratio, but no such direct 
viscous effect was detected. This implies that the decrease in upward momentum 
causing the flow in the fountain to reverse was always dominated by buoyancy acting 
on the inner turbulent flow and the interaction between the upward and downward 
streams of this inner flow, and not by entrainment of outer fluid. 

The dramatic change of entrainment rate can be understood as follows. When a 
fluid of higher viscosity u2 surrounds the turbulent fountain, the host fluid can be 
entrained only when the inertial forces associated with the turbulence can distort or 
wrinkle the bounding surface. The limiting condition, at which the viscous and 
inertial forces are comparable at  scale 1 in the outer fluid and viscosity inhibits any 
such distortion, can be expressed simply as v l / u , z  1, where 1 and v are defined by 
(33) and (34). This result can be derived in various (equivalent) ways, for instance 
by requiring that the Kolmogorov scales of the flow induced in the outer fluid be 
comparable with the scales v and 1 of the inner flow, or that the normal stresses 
generated by turbulence be comparable with the viscous stresses generated when the 
interface is deformed. Using again the result obtained from (33) and (34) that 
vl a wd, this relation implies that at  high (turbulent) values of Re, the rate of mixing 
will be unaffected by any further reduction of u provided 

wd 
V2 

Re, = - > k, (35) 

where k is a constant. That is the criterion for uninhibited entrainment is determined 
by a Reynolds number based on the input parameters d and w of the fountain and 
the viscosity u2 of the outer fluid, and is independent of the viscosity u, of the inflow. 
It can also be written in the more symmetrical form 

wd u, 

V 1  y1 
Re, = - > k-, 

which predicts that as the viscosity ratio increases, the inflow Reynolds number must 
increase in proportion if mixing is to remain possible. 
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r 

v2 

FIGURE 17. The results of ‘fountain’ experiments carried out using a fixed nozzle size and three 
input rates, corresponding to the different symbols: 0, wd = 68 emz s-l, Ap = 0.10 g ~ r n - ~ ;  0, 0 ,  
0 wd = 18 om2 s-l, Ap = 0.05 g ~ 1 1 1 ~ ~ ;  0, wd = 3.9 cm2 s-l, Ap = 0.0020 g ~ 1 1 1 ~ ~ .  The normalized 
entrainment H( = h/h*) is plotted against the kinematic viscosity u2 of the host fluid in centistokes, 
on a logarithmic scale. (See text for more details.) 

These theoretical relations were used to interpret the results of three series of 
experiments, conducted for three fixed values of wd and Ap; the latter was chosen 
to give an experimentally convenient height of rise of the fountains. The total 
amount of fluid supplied, recorded as h,, the height of the column of liquid added 
to the rectangular tank, was also kept fixed in each series. The ‘entrainment height ’ 
h was defined as the difference between h, and the height h, of the mixed or hybrid 
layer a t  the bottom of the tank. The maximum entrainment height h* in each series, 
corresponding to the minimum value of v2, at which the outer fluid had no effect on 
reducing entrainment, was used to normalize the results. 

The results of the three series of experiments with different values of wd are shown 
in figure 17, plotted as H = h/h* against v2 in each case. The following features give 
clear support to (35) .  For each value of wd, there is a critical value of v2, (=  vg say) 
below which changes of viscosity of the host fluid have no influence on mixing. When 
v 2  > v i  there is a rapid fall in the entrainment rate, which is controlled by v2 in this 
range; the rate is halved at a value corresponding to k = 30, and entrainment 
becomes negligible when v2 2 10~;. The higher the value of wd, the higher is the 
value of v2 at which the viscosity of the host fluid first influences entrainment. If the 
‘entrainment midpoint ’ for the curve of highest input Reynolds number is scaled to 
the conditions of the other two experiments, the arrows mark the corresponding 
viscosities a t  which the entrainment is predicted (using (35) with k = 30) to fall to 
half their maximum values. The displacement of these arrows from the experimental 
curves is a measure of the direct effect of v1 in reducing entrainment, and the 
increasing disagreement at lower wd-values indicates a real effect of low Re,, which 
has been documented in a further series of experiments. 

It is to be expected that the principles established in this study will be more 
generally applicable to other turbulent flows surrounded by more viscous fluids, 
though comparable detailed results still need to be obtained for plumes, for example. 
For the particular geological application which motivated the ‘fountain ’ study the 
conclusions are already very clearcut, however. If a primitive basaltic magma is 
injected into a chamber containing fractionated basaltic magma, the viscosity of 
both magmas will be low and not very different. The flow will be turbulent unless 
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the feeder pipes are very small, and the two magmas will mix readily. However, if 
basaltic magma is injected into a much more viscous silicic melt, little or no mixing 
will occur, except in the uncommon situation where the feeder dyke is several 
hundreds of metres wide. 

10. Conclusions 
Many different kinds of entraining flows have been surveyed in this paper, and the 

entrainment assumption has been shown to be useful in diverse contexts and over 
a wide range of scales. A t  several points we have paused to assess why it works so 
well in particular cases, but in this final section let us look again at the whole range 
of flows treated, picking out some common features and some unresolved problems. 

The most successful and best-understood application is the entrainment into free 
turbulent flows such as jets or plumes. In these flows, the mixing is dominated by 
the mechanism of engulfment of external fluid by large eddies having velocity and 
length scales determined by the mean flow, and the underlying similarity assumption 
is likely to remain valid, even when the surroundings are stratified. The density 
differences are small, and the entraining boundaries are nearly vertical, so that 
buoyancy effects do not enter the problem. The recent more fundamental work on 
mixing across shear layers gives strong support to this picture, and explains why 
smaller-scale turbulence and viscous diffusion of vorticity need not be taken 
explicitly into account in describing the entrainment. 

Turbulent thermals or buoyant vortex rings are in a special category, for which 
it is not clear that  the concept of entrainment is appropriate a t  all. The rate of spread 
with height, and therefore the rate of incorporation of fluid moving with the buoyant 
element, are determined by the overall buoyancy and circulation, which can be set 
independently a t  the source and remain constants of the motion (in homogeneous 
surroundings). It may however be possible to define an appropriate velocity scale, 
related to these parameters, which would again justify the use of an entrainment 
assumption. The extent to which the small-scale turbulent motions in the buoyant 
core or the accompanying fluid are determined by the large-scale motion also needs 
to be examined further. 

The entrainment concept has been extended to several different situations in which 
some other physical process, not simply engulfment by large eddies, dominates the 
rate of transfer across an interface. When there is a density step, with or without 
a mean shear flow, the most important additional parameter on which entrainment 
depends is a Richardson number based on the density difference and the velocity and 
length scales of the largest turbulent motions near the interface, i.e. a measure of the 
balance between inertial and buoyancy forces. It is the response of the fluid outside 
the turbulent region that determines the rate of entrainment in this case, and there 
are strong energy constraints on the mixing. The imposition of a velocity a t  an 
entraining interface is only the first part of the whole physical picture, which has been 
seen to involve a wavelike recoil of the interfacial region, and mixing by motions on 
different scales. 

In  a similar way, the ability of a turbulent flow to entrain a more viscous fluid 
outside it depends on the response of the external fluid. Inertial forces in the 
turbulent flow must be able to generate sufficiently large normal stresses in the 
surrounding fluid to overcome the viscous stresses and allow the interface to deform 
in the manner necessary for mixing. It seems likely that mixing between fluids of very 
different density might be amenable to an analogous approach, in which a turbulent 
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flow on one side of an interface is regarded as given, and the response of very much 
denser (or less dense) fluid outside the boundary calculated. The experimental and 
theoretical evidence on this point is, however, the most contradictory and least 
satisfactory of any of the results discussed in this paper. Part of the difficulty arises 
perhaps from the ‘thermal ’ geometry in which some of the work has been done, and 
which leads to the ambiguity summarized above, between entrainment and the 
expansion set by the overall flow parameters. It should be possible to devise an 
experimental geometry that would give a clear answer to  this question, and thereby 
shed further light on the entrainment mechanism in general. But we should note 
again in conclusion that the case of large density difference is of limited practical 
significance for most geophysical applications, in which the density differences 
rapidly become small enough for the Boussinesq approximation to be valid. 

I am grateful to R. W. Griffiths, J. C. R. Hunt, H. E. Huppert, G. N. Ivey and 
P. F. Linden for their helpful comments on an earlier draft of this paper. 
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